P\
’/\\ \

=\
1~

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

/A '}

7~

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

L A

OF

A

A

SOCIETY

OF

Downloaded from rsta.royalsocietypublishing.org

PSS THE ROYAL

or—— SOCIETY

The Collapse of Cavitation Bubbles and the Pressures
thereby Produced against Solid Boundaries

T. B. Benjamin and A. T. Ellis

Phil. Trans. R. Soc. Lond. A 1966 260, 221-240
doi: 10.1098/rsta.1966.0046

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1966 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;260/1110/221&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/260/1110/221.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

[ 221 ]

E. CAVITATION

XX. The collapse of cavitation bubbles and the pressures thereby produced
against solid boundaries

By T. B. BeEnjamiNT anD A. T. Erris}
Department of Applied Mathematics and Theoretical Physics, University of Cambridge

=

[Plates 48 and 49]

Our object is to present a broad review of this subject as a branch of hydrodynamics, referring both
to the well known ‘implosion’ mechanism first analysed by Lord Rayleigh and, more particularly,
to the recently perceived possibility that effects of equally great violence, such as to damage
solid boundaries, may arise through the impact of liquid jets formed by collapsing cavities. In §2
a few practical facts about cavitation damage are recalled by way of background, and then in §3
the significance of available theoretical and experimental information about cavity collapse is
discussed. The main exposition of new ideas is in §4, which is a review of the factors contributing
to shape changes and eventual jet formation by collapsing cavities. Finally, in §5, some new
experimental observations on the unsymmetrical collapse of vapour-filled cavities are presented.
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The violent character of vapour cavities in a liquid inasmuch as they can give rise to
extremely high hydrodynamic pressures when they collapse is very well known, and since
the time of Parsons’ and Rayleigh’s original commentaries on the matter this property has
been generally accepted as the basic explanation for the damage of solid boundaries by
cavitating liquids. The mechanism whereby forces large enough to cause damage are
brought to bear against a boundary is still rather obscure, however, and both the experi-
mental and theoretical problems remain a long way from being fully resolved. The aim of
this contribution is to outline the outstanding questions still posed by this aspect of
cavitation and to review some recent findings which may help to answer them.

In particular we focus attention on a question whose importance has probably been
suspected by many people since the earliest days of the subject, but which has only recently

Y B \

- become well defined. It now appears to be a definite possibility that the impact of liquid
§ P Jets, formed by involution of collapsing cavities, is a primary factor in cavitation damage,
olm adding considerably to and perhaps often outweighing in its effect the better-known
= ‘implosion’ mechanism that Rayleigh (1917) demonstrated theoretically as a source of high
E 8 pressures. Jet formation in vapour cavities generated by electric sparks in proximity to
~ solid boundaries has been studied by Naudé & Ellis (1961) and by Shutler & Mesler

(1965), and their observations vividly establish the possibility now in view; but the evidence
so far gained by this particular experimental technique is quite insufficient for any confi-
dent assessment of the general role of the jet phenomenon in cavitation damage. An experi-
mental investigation has been begun by us with the object of examining this phenomenon
further, and some preliminary results are presented in the final section of this paper.

1 Elected F.R.S. 17 March 1966.
I On leave from the Hydrodynamics Laboratory, California Institute of Technology.
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222 T. B. BENJAMIN AND A. T. ELLIS

2. SOME FACTS ABOUT CAVITATION DAMAGE

Our present concern is primarily with the small-scale hydrodynamic processes that may
lead to cavitation damage, rather than with the practical facts about the susceptibility of
materials to this kind of damage,and about the performance of apparatus for erosion tests.
These other aspects of the subject are to be taken up by later contributors to the Discussion,
and we do not wish to encroach much upon them. To fix this contribution in the practical
context, however, it seems desirable to summarize a few more or less generally agreed
conclusions on the nature of cavitation damage, such as give particular point to the kind
of basic investigation represented in the following pages. For a comprehensive review of
the background to current thinking about cavitation damage we may refer to the report
by Eisenberg (1963), which includes over a hundred references.

In the past much contention has arisen over the interpretation of cavitation-damage
measurements, and undoubtedly the main source of confusion has been that the long-term
effects of cavitation attack, as observed for instance in worn hydraulic machinery, are
largely brought about by corrosion, which is reinforced in a very complicated way by the
prolonged action of the mechanical stresses on the metal surfaces. But ample evidence now
exists showing that, at least in its early stages, cavitation damage is essentially mechanical
in nature. For example, Plesset & Ellis (1955) examined the initial effects that were caused
on various materials by sonically induced cavitation in a chemically inert liquid, specific-
ally toluene under a helium atmosphere, and they found the damage to be practically the
same as when water was used.

Inspection of materials exposed even for very short times to intense cavitation reveals
localized signs of plastic deformation, leading to fatigue failure. Ductile materials are
often found to go through an ‘incubation period’ during which extensive cold-working
may occur but no weight is lost, whereas for brittle materials the rate of weight loss often
takes a definite value from the start. On soft materials like aluminium the evidence of
damage may be obvious almost immediately upon application of the cavitating liquid,
well defined pits being formed in the surface. On hard materials nothing may be seen
directly, but use of refined metallographic techniques, such as the observation of X-ray
diffraction patterns, has well established that cold-working generally begins with the first
exposure to cavitation (see Plesset 1956).

There is now enough definite evidence available to confirm the general conclusion that
the effects on a solid boundary are attributable to the collapse of individual cavitation
bubbles (see, for example, Knapp 1955, 1958; Hammitt 1963). This fact has for long been
commonly assumed, but until quite recently, when the careful experimental observations
made by the people just mentioned and others became available, it was a more or less
open question whether damage is due to the integrated effect of the profuse cloud of
bubbles that is usually present, or whether, as is now generally agreed, just a few members
of the cloud have a specially destructive effect.

Thus, the two practical conclusions guiding us are that the essential problem is a
mechanical one, and that study of individual collapsing bubbles is the key to understanding
the damage process.
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3. GENERAL IDEAS ABOUT THE COLLAPSE OF CAVITATION BUBBLES

As regards the essential dynamics, the violent action of collapsing cavities was demon-
strated very clearly by Rayleigh’s well known analysis (1917), which still remains the
cornerstone for most theoretical thinking on the subject. In the first place he considered an
isolated spherical void collapsing in an incompressible liquid under a constant pressure at
infinity, and he showed that as the collapse nears completion the inward velocity of the
cavity wall and the pressure inside the liquid become indefinitely large. He recognized,
however, that a more realistic physical model is provided by allowing the cavity to contain
a small quantity of insoluble gas, whose compression ultimately arrests the inward motion
and causes the cavity to ‘rebound’. Improved representations of the effects of gas and
vapour contents, and various other physical factors, have been included in the theory
since Rayleigh’s time; but almost all the work done so far on the problem has proceeded
on the original assumption of spherical symmetry.

A reason for circumspection about analyses on this basis is that, as was shown by
Birkhoff (1954) and Plesset & Mitchell (1956), the spherical form of a collapsing cavity is
unstable to small perturbations. Nevertheless, the instability is of a rather weak kind while
the inward motion is not being significantly retarded by compression of the cavity contents,
and experimental cavities can appear to remain approximately spherical throughout most
of their collapse, provided the effects of hydrostatic and other ‘environmental’ pressure
gradients are eliminated (see §5). But in the concluding stages of collapse, when enormous
outward accelerations of the cavity surface occur under the pressure of the contents, the
spherical form becomes violently unstable (Benjamin 1954), the cause being essentially the
same as the Taylor instability of a plane interface accelerated in the direction from the
lighter to denser fluid. For this reason rebounding cavitation bubbles often present a highly
irregular, starlike appearance (see, for example, Knapp & Hollander 1948).

In typical conditions the duration of the pressure pulse arising from a single bubble
collapse in water is found to be of the order of 1 us (Ellis 1956), which accords with the
common observation that the spectrum of cavitation noise contains appreciable energy
well into the megacycle range of frequencies; and there exists fairly conclusive evidence
that the maximum pressure at the centre of collapse can reach 10* atm (Sutton 1957;
Jones & Edwards 1960). When such high pressures arise the compressibility of water is
bound to become a vital factor in the motion near the end of collapse, and the pressure
pulse radiated from the centre will take the form of a shockwave. Allowance for compressi-
bility of the liquid is therefore a particularly important objective in modern refinements of
the Rayleigh theory, and a great deal has already been accomplished in this direction,
notably by Gilmore (1952), Flynn (1957, 1964), Mellen (1956), Hunter (1960), Hickling &
Plesset (1964) and Ivany (1965). Their work has shown that compressibility has a moderating
influence on the collapse of a cavity, in the sense that a large part of the available energy
may be stored in a compression wave well before the inward motion is finally arrested, so
that the process of concentration of energy towards the centre is less intense than it is in
an incompressible liquid. It is found that a shockwave does not form during the collapse,
but one may appear soon after a gas-filled cavity begins to rebound, or when an empty
cavity finally closes up. The maximum pressure of the compressed contents was shown by
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Benjamin (1958) to give a simple general criterion of the capability of a rebounding bubble
to generate a true shock, as distinct from a steep but still essentially continuous pressure
pulse, and exact calculations by Hickling & Plesset (1964) have demonstrated a commen-
surate but rather more precise criterion in one particular case. It appears that a shock will
be formed at a reasonable distance from a rebounding bubble in water if the internal
pressure rises above about 10° atm, which is a level evidently exceeded very frequently in
typical circumstances of cavitation.

Even when full allowance is made for moderating factors such as those mentioned here,
the theory clearly indicates that enormous pressures can be developed near the centre of
a symmetrical cavity collapse, and there appears no cause to doubt the experimental
estimate that pressures of the order of 10* atm are quite typical. This is an impressive
magnitude, and the general physical picture that is suggested accounts readily for many
of the remarkable effects of intense cavitation such as ‘sonoluminescence’ and the cata-
strophic destruction of microbes (Flynn 1964).

Itis a popular and quite reasonable interpretation, therefore, to make a loose association
of cause and effect between, on the one hand, high collapse pressures developed in the
particular way that Rayleigh showed and, on the other, all the familiar manifestations of
cavitation damage. However, the view now held by the present writers and several others
is that the Rayleigh theory with its modern improvements probably does not tell the whole
story as regards the essential factors in cavitation damage, even though it serves very
adequately to explain other effects such as cavitation noise (Fitzpatrick & Strasberg 1956;
Flynn 1964), specifically those attributable to individual bubbles formed inside a liquid at
a reasonable spacing from any solid boundary and from neighbouring bubbles. The high
values of internal pressure predicted by the Rayleigh theory are definitely misleading if one
loses sight of the fact that they occur only when a cavity has shrunk to extremely small
size, and that the amplitude of the radiated pressure wave diminishes with relative radial
distance /R at least as rapidly as (r/R)~!. To test the relevance of their spherical-collapse
analyses to the damage of solid boundaries, both Hickling & Plesset (1964) and Ivany
(1965) estimated some values of peak pressurc at distances from the centre of collapse
comparable with the initial (maximum) radius of the cavity. Ivany concluded that
pressures sufficient to cause damage did not occur at such distances; and while Hickling &
Plesset were able to obtain some marginally adequate values, the respective conditions for
the cavity were so extreme that the overall model became of very doubtful physical
validity (e.g. the initial pressure of the cavity contents had to be made unrealistically small;
also the necessary final internal pressure according to this model, when allowance is made
for attenuation of the very strong shockwave that is developed, seems unreasonably high—
being apparently of the order of 10® atm). The point we wish to emphasize is that probably
any cavity producing a damaging effect in practice must, throughout its collapse, be so
close to the solid boundary that very large departures from spherical symmetry are
inevitable;T and this class of situation presents a hydrodynamical problem significantly
different and unfortunately much more difficult than the Rayleigh problem.

The focus of our initial conceptions about cavitation bubbles collapsing near a solid
boundary lies in the fact that they can in various ways acquire translational motion

1 For footnote see facing page.
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towards the boundary. As a result of the collapse, during which the displaced volume may
become an extremely small fraction of its maximum value yet its centroid still be brought
up close to the boundary, this motion may lead to the delivery of a highly concentrated
impulse against the boundary. The principle in view is simply one of momentum con-
servation, and accordingly the result in view may be regarded separately from the effects
of high pressures developed by compression of the cavity contents. Thus, we believe,
powerful effects can arise which are extra to the Rayleigh implosion mechanism.

The evidence already mentioned about jet formation by collapsing cavities is particu-
larly interesting material for this general interpretation, and we shall take up the matter at
some length in §4. Apparently Kornfeld & Suvorov (1944) were first to suggest that the
impact of liquid jets could be responsible for cavitation damage, and the possibility was
discussed again later by Eisenberg (1950). In the experiments by Naudé & Ellis (1961),
which were first to give indisputable evidence of jet formation, bubbles were generated in
water by electric sparks between electrodes placed at various distances from a solid wall.
Observations on a particular bubble, which at maximum size was roughly spherical but in
contact with the wall at about 40° latitude, were found to be in good agreement with the
results of an approximate theory; and it appeared that as the volume of the bubble
decreased (i.e. when the vapour and gaseous products of the spark had cooled sufficiently
for the bubble to be collapsed under the environmental pressure), its surface eventually
folded inwards from the pole, finally striking the wall on the axis of symmetry. From studies
of the damage produced on a surface of annealed aluminium, it was concluded that
pressures caused by such impacts exceeded those arising from compression of the bubble
contents.

The more recent experimental study by Shutler & Mesler (1965) was on much the same
lines, but they concluded that ‘the jet has little or no damage capability’. The limited
evidence presented scarcely supports this as a general conclusion, however, and possible
reasons for the discrepancy with Naudé & Ellis’s findings are easily found. In particular,
it seems that the bubbles observed were in a general way less vigorous than those in the
previous experiments, probably because the sparks producing them were made by dis-
charging a condenser at considerably lower voltage and so had longer duration for the
same total expenditure of energy. In several of the sequences of photographs presented by
Shutler & Mesler the spark is seen to have remained alight throughout the complete
observed history of the bubble, whereas in the previous experiments the spark was always
extinguished before the collapse began.

We shall not discuss the discrepancy any further here because clearly the more important
question is the general one whether experiments of this kind provide a true model of the
cavitation-damage process in flow systems. It is difficult to estimate the overall importance
of the various extraneous factors that the spark technique undoubtedly introduces, and
there is the obvious disparity that the bubbles are generated and collapsed iz situ, whereas

+ An exception to this statement must be allowed in the case of a perfectly hemispherical cavity founded
upon a solid boundary. Cavities with this form can be made experimentally by the electric-spark technique
(see, for example, Jones & Edwards 1960) ; but they are extremely unlikely ever to occur in cavitating flows,
and even in sonically generated cavitation, where they might be expected to occur occasionally, no evidence
has been found of their being a common event.

28 Vor. 260. A.
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real cavitation bubbles generally originate from points far removed from the region of
collapse. The velocity of a bubble towards the boundary at the beginning of collapse
probably has an important influence on its damage capability, but the method affords no
control on this property. It must be acknowledged, therefore, that the experimental
modelling of damage-producing cavitation bubbles remains a more or less open subject at
the present time.

An experimental fact worth noting in this connexion concerns the rate of occurrence of
manifestly destructive cavities, such as to produce individual pits in a test specimen of soft
material. Especially in cavitating flows but also in cases of sonically induced cavitation,
this is found to ve bery small in comparison with the total rate of formation of cavities in
the general neighbourhood of the boundary. For example, from observations on the rate
of pitting in an aluminium test section exposed to a cavitation cloud in a water tunnel,
Knapp (1955) estimated that only one in 30000 of the transient cavities swept into the
region of the test section caused a damaging blow. This fact gives good reason to frame an
explanation for cavitation damage as depending on a rather crucial combination of
conditions for individual cavities. It may be that conditions are just right (or just wrong,
one should perhaps say) when the translational movement of a cavity is just enough to
bring the centre of collapse up to the solid boundary, and to cause a jet to form just before
the cavity reaches minimum volume and maximum internal pressure; then the jet may
have the largest possible velocity, and its impact against the boundary may optimally
reinforce the simultaneous effect of the high collapse pressure. As will be discussed later,
a cavity may become involuted into toroidal form during contraction, and if this occurs
well before the end of collapse the damage potential is probably reduced far below the
optimum. Again, the spark-generated cavities observed by Naudé & Ellis and by Shutler
& Mesler generally made contact with the solid boundary while they were still much
larger than minimum size, and the jets thereafter formed by involution of the far sides of
these cavities were comparatively large and low speed ones; accordingly these obser-
vations, particularly those by Shutler & Mesler, may not be representative of the most
destructive forms of cavity collapse.

4. THEORY RELATING TO ASYMMETRIC BUBBLE MOTION

Before presenting our new experimental results, we shall review a few theoretical points
that are helpful towards understanding the observed phenomena. The general object is to
explain the typical behaviour of collapsing cavities when large departures from spherical
symmetry are enforced, either by longitudinal pressure gradients or by proximity to solid
boundaries. High speed jets can arise from either of these causes, and so it has seemed
reasonable to couple the two closely in our investigation.

A great deal of work on this general subject has been done in connexion with under-
water explosion bubbles, and much of the theory, notably the contributions of Sir Geoffrey
Taylor, is also valuable in the present connexion. A mine of relevant information is
provided in volume 11 of the compendium, edited by Hartmann & Hill (1950), of wartime
reports on underwater-explosion research, and some of the same material can be found in
the book by Cole (1948). While pulsating explosion and cavitation bubbles have obvious
similarities as regards the essential mechanics, however, there is an important distinction
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between them in that the typical scale of the collapse, expressed for instance by the ratio
of the maximum to minimum volume, is very much larger for cavitation bubbles. At first
sight, the effects of hydrostatic and other pressure gradients in the water would appear to
be comparatively insignificant for cavitation bubbles, since their size is so much smaller
and their life-time so much shorter; but these effects are greatly amplified by the contraction
of a cavity, and we shall presently show some direct evidence of their importance in the
present case.

The theoretical question central to our discussion is what general effect does a trans-
lational movement have on a collapsing cavity? To answer this the momentum of the fluid
must somehow come into consideration and consequently one needs to be rather careful—
no less than one generally needs to be careful when considering the momentum of a fluid
set in motion by the translation of a rigid body. We do not wish to dwell unduly on the
basic difficulty, which is anyway quite well known; it has been discussed, for instance, by
Lamb (1932, p. 161) and more thoroughly by Birkhoff (1950, p. 158). But in order to
develop any secure argument in terms of momentum, one must recognize that the classical
perfect-fluid theory poses a paradox inasmuch as the total momentum of an infinite fluid
may be indeterminate, notwithstanding that the motion of a finite body through the fluid
is related in a simple, definite way to the propulsive forces.

ty
~

—_— —

Ficure 1. Diagram illustrating the discussion of momentum.

The best rationale for the matter is the one originally proposed by Kelvin when he
initiated this part of hydrodynamics (see Lamb, ch. 6). The essentials are illustrated in
figure 1, where a simply connected body is shown placed alone in an infinite expanse of
fluid whose envelope is implied by the dashed line. We consider the impulse 7 that would
have to be applied to the body in order to generate any given motion from rest. (If the
body is not symmetrical about an axis in the direction of motion, / must comprise an
impulsive wrench, but this case need not concern us here.) The impulse thus defined is not
in general equal to the momentum of the body and fluid together, because its application
will generally produce an impulsive reaction in the fluid at infinity (represented by I’ in
the figure). This reaction, and hence the total momentum of the fluid, depends on how the
infinite envelope of the fluid is specified. For example, if one insists that the fluid is

28-2
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contained in an infinite rigid box, it follows that the momentum must be in the direction
opposite to the motion of the body, since the centroid of the fluid is obviously displaced
this way; then the reaction at infinity exceeds the part of I due to the fluid. Again, Theo-
dorsen (1941) showed that if one considers the fluid in a huge cylinder, taking its axis in the
direction of motion and making its length infinitely greater than its width, then the
impulsive reaction at infinity vanishes and the Kelvin impulse 7 equals the total momentum
in this case. But the choice of conditions at infinity is really immaterial, because obviously
the actual motion of the body will not depend on what happens at infinite distances away.
Thus, to be definite, one should always reason in terms of the Kelvin impulse, not in terms
of the fluid momentum whose value is in fact immaterial to the physical problem.

Let F denote the external force acting on the body. (The obvious generalization to a
vector force, and resolution of I into orthogonal components, need not delay us here; it
will suffice to assume F acts along some specific axis about which the body is symmetrical.)
Considering the motion of a rigid body under an external force, Kelvin proved that

d7/dt = F, (1)

and this important formula is the key to the present problem. For, when Kelvin’s argument
leading to (1) is re-examined, it appears to hold equally well for a deformable body, even
one whose volume changes during the motion. (The latter case demands caution, of course,
because any volume change produces a net flow at infinity.) Hence a closed cavity is
included in the range of application, being equivalent to a deformable solid body with
negligible mass, and 7 is then attributable wholly to the inertial effect of the surrounding
fluid.

One useful idea upon which we may draw is, therefore, that a bubble projected through
an infinite liquid creates a motion with either a constant Kelvin impulse, in the absence
of external force, or an impulse that changes at a rate equal to the force in the direction
of motion. The effect of a pressure gradient dp/dx extending over the environment of a
bubble whose instantaneous volume is ¥~ may, of course, be interpreted as a force
— (dp/ox)?” in the x-direction: for example, the buoyancy force — pg?” due to a hydrostatic
pressure gradient pg in the downward vertical direction. As a further point of inter-
pretation, appeal may be made to the complementary definition of the Kelvin impulse,
namely that an equal but opposite impulse must be applied over the surface of the bubble
to arrest its motion at any instant.

According to these lines of reasoning, the impulse associated with a moving bubble
presents much the same intuitive physical picture as the momentum of a rigid projectile
in free space, and hence the feasibility of impact effects in the process of cavitation damage
is immediately appreciated. To account with any certainty for the case of a bubble moving
up to a solid boundary, however, the argument so far developed is clearly inadequate,
because (1) holds only for a body infinitely remote from any other boundary of the fluid.
Several simple extensions of the argument can be used for this case, and though none of
them is entirely free from objection the general conclusion reached seems fairly sound.
One way is to consider a bubble started towards a finite fixed solid body (the object B in
figure 1) which is initially at such a distance away that it does not share significantly in
the starting impulse. We assume for simplicity that no external force applies other than
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that necessary to hold the body B in place. As the bubble moves up to B the Kelvin impulse
of the composite system will remain constant; and hence we deduce that there must be a
forward impact force against B, because when the motion has been arrested the external
reaction keeping the body in place has delivered an impulse equal but opposite, and so
cancelling, the original impulse to the bubble.

We go on to consider how the effects of the Kelvin impulse may be concentrated when
a bubble is collapsed. For bubbles that become seriously distorted away from spherical
form a very difficult analytical problem is presented, and cumbersome approximation
methods provide the only way to explicit solutions. A few interesting properties of the
possible motions can be inferred by general arguments, however, and to this end we now
use some results derived in the appendix to this paper. These results relate to any axi-
symmetric body moving in the axial direction through an infinite perfect fluid while at
the same time undergoing changes in shape and volume. Letting x,(¢) denote the axial
coordinate of the centroid of the displaced volume and 4, (¢) a set of parameters deter-
mining the form of the body, we have that the kinetic energy of the fluid is expressible in

the form T = YMi3+Jiyg+T'. (2)

Here M, which is a function of the A, alone, is interpretable as the induced mass for a
rigid body having the form defined instantaneously by the A,. The energy 7", being
independent of x, and #,, is a property only of the rate of deformation (see equation
(A 10) in the appendix). The second term on the right-hand side of (2) includes all
products between the axial velocity %, and the generalized velocities A,, so that we write

J =3B\, (3)

As will be discussed in the appendix, the outstanding point here is that the coefficients B,
all vanish when the body is spherical or ellipsoidal, irrespectively of course of how rapidly
its volume is changing, and they are generally small unless the body develops a large
skewness in form.

Let us return to the specific case of a cavity, for which (2) expresses the kinetic energy of
the whole system, and write

V= ~dex0+pwV—fpidV (4)

for the potential energy. Here p., is the pressure at infinity, assumed constant, p, is the
pressure inside the cavity, and ¥ is the cavity volume. Clearly, the last two terms in (4)
are not explicitly dependent on #,, and F'is identifiable with the external force as explained
hitherto. (The effects of a surface tension y could be represented by adding to (4) the
product of y and the surface area of the cavity, but this complication seems unwarranted
at present. It is desirable to bear in mind, however, that surface tension will always tend
to keep the cavity spherical, this property being implicit in the fact that the surface area
will increase with any one of the parameters A, (n > 1, say) measuring deviations from
spherical form.) One of the Lagrangian equations for the system is

d @7\ JT IV
i 55,) o, T, = O )
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which shows that d(Mzy,+J)/di = F. (6)

Thus Mz, J is identified with the Kelvin impulse 7.

Unfortunately we cannot draw any simple conclusions about the magnitude of J when
the deformation of a cavity becomes large; that is, we cannot then say how the impulse
will be shared between the component M, depending on the instantaneous translation
and the component J depending on the deformation rate. But we can still infer a good
deal on the basis of the facts about J noted below equation (3). In particular, it appears
that the velocity %, must increase if an approximately spherical cavity is contracted by
a large amount in all its dimensions; for, recalling general experience with rigid bodies,
one can be sure M goes down with any large overall reduction in size, while J will not
make much of a contribution to / at least at first. Suppose for simplicity that F = 0
during a collapse, or that the collapse occurs in a time so short that the change in [Fd/ is
not very significant. Then Miy+J = const., (7)

and it follows that while J remains unimportant the first term in the expression (2) for the
kinetic energy increases in inverse proportion to M as the collapse proceeds. Moreover,
since J vanishes identically with the deformation rate, Mz, would return to its original
value if the cavity happened to approach some steady form at the end of collapse; in such
a case the kinetic energy of translation clearly could become very much larger than at the
start. (Note that J represents in effect the impulse that is self-generated by the cavity in a
frame of reference moving with the centroid; that is, it represents the impulse with which
the cavity tends to propel itself away from the origin of this inertial frame. From this view-
point the need for a large skewness in form to make J significant is readily appreciated.)

Now, a basic interpretation of the Rayleigh collapse mechanism is that, as ¥~ decreases,
the total energy 7V (which is, of course, constant in the present dissipationless model)
converts in kind from an initial potential energy, represented mainly by the second term
on the right-hand side of (4), to the kinetic energy of the radial motion, until finally a
rapid reconversion to potential energy occurs when the pressure f; of the compressed
contents of the cavity rises to high values and the final term in (4) becomes predominant.
But we now see that the translational motion may gain kinetic energy at the expense of
the motion relative to the centroid; and indeed the possibility has appeared that the whole
energy of collapse (i.e. p., times the initial 77, very nearly) could be drawn into the trans-
lational motion, provided the impulse / were large enough so that the required volume
reduction, making M finally small enough, were still insufficient for a significant fraction
of the total energy to be imparted to the cavity contents. This line of reasoning, tentative
though it has to be in the absence of complete knowledge about J, supports a general
intuitive judgement that the possession of a Kelvin impulse by the system will enfeeble the
collapse of a cavity in so far as events might be viewed from the centroid. In the external
view, however, the transferred energy may be manifested with physical consequences that
appear no less important than those of energy concentration in the cavity contents.

The cavity deformations implied in the foregoing discussion cannot be deduced a prior:
in any simple way, at least not when they become large, but several further considerations
of a general kind can be made which illuminate the behaviour typically observed. It was
shown first by C. Herring (in a paper included in Hartmann & Hill (1950); see also
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Birkhoff' & Zarantonello (1957, p. 246)) that if a liquid containing a spherical cavity is
suddenly subjected to a uniform force-field such as gravity, or equivalently to a uniform
pressure gradient, the cavity remains spherical during its initial motion; that is, the motion
comprises a rigid displacement, in the direction from high to low pressure, plus a uniform
contraction. (This result is indeed immediately deducible from the fact that J = 0 for
a sphere.) But when the cavity picks up speed it cannot remain spherical, of course,
because the hydrodynamic pressure on a moving sphere is not a constant. In fact it will
always tend to flatten broadside to the direction of motion, the effect eventually becoming
more pronounced on the rearward side. Note that this behaviour will be represented
mainly by terms of the type —34%(dAL/dA,) in the Lagrangian equations for the un-
symmetrical components of the motion, rather than terms derived from J. Moreover, the
initial tendency to flatten is well explained by the fact that, as common experience shows,
dM|dA, will be largest for parameters A, that measure distortions into oblate form.

For a full appreciation of the typical shape changes observed in moving cavities we may
turn to the very extensive studies of them in the instance of underwater-explosion bubbles
rising under gravity (see, for example, Cole 1948 or Hartmann & Hill 1950). A point of
special interest to us now, which is already strongly implied by the preceding energy
considerations and has been well recognized in explosion-bubble studies, is that the
characteristic tendencies like rearward flattening will be greatly emphasized if the cavity
volume decreases by a large amount, as is typical of cavitation bubbles.

An instructive question to ask oneself with regard to this point is, ‘What happens
ultimately to the shape of a cavity that is shrunk smoothly down to nothing while moving
through an infinite liquid?’ According to the principles just explained the translational
motion must speed up, of course, but an infinite velocity of translation in the limit appears
impossible for a cavity with uniform pressure over its surface. Again, if the liquid remained
simply connected as the cavity closed up, the Kelvin impulse would have to vanish, which
we cannot allow in the absence of an external retarding force. The only reasonable
answer is that the cavity must deform in such a way as to make the liquid multiply
connected. Circulation can then appear in the liquid (cf. Lamb 1932, §51), and we are
left in the limit with a vorfex system possessing the original Kelvin impulse. For example,
the cavity may take on the form of a torus, which makes the liquid doubly connected, so
that a hollow vortex ring is produced. The cavity can then be compressed to indefinitely
small size while still preserving the same impulse. And clearly the original cavity must fold
in from the back (i.e. be threaded through in the direction of motion) in order to produce
a circulation with the right sense (cf. Lamb, §§152, 162).

'This nicely explains what has sometimes been observed to happen when a cavitation
bubble is collapsed after having acquired a translational motion relative to the liquid in
its neighbourhood. A jet forms by involution of the back of the cavity, and something well
describable as a hollow vortex ring finally appears. Ellis (1956) observed such behaviour in
a bubble collapsed sufliciently slowly (i.e. under a small enough pressure) to be consider-
ably affected by gravity, and a fine example of it has recently been recorded by Ivany
(1965). He took high speed ciné photographs of bubbles collapsing in the diverging part
of the flow through a Venturi section in a water tunnel, and the observed effects evidently
arose in consequence of the strong adverse pressure gradient in this region. Also in support
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of this general idea we should note the calculations made by Kolodner & Keller (1953),
with application to explosion bubbles rising under gravity, which were developed to a
stage where the supervention of vortex-ring formation was clearly indicated.

As a general interpretation of the phenomenon of jet penetration through collapsing
cavities, one can simply say that the liquid is finding the only possible way to preserve its
impulse as the cavity size decreases. Or one can say, perhaps more tellingly, that when the
impulse is too large to be manifested by translational movement of the cavity in approxi-
mately spherical form, the cavity tends to form a torus because the vortex ring evolved is
the only flow capable of manifesting the impulse for indefinitely long under the handicap
of the reduced volume displacement available. The crucial factor is the magnitude of the
impulse in relation to cavity size; and whereas we are interested here in the enforcement
of the effects by large volume reductions, it must be recognized that similar behaviour can
ensue when a bubble whose volume remains approximately constant is somehow projected
into a liquid with an exceptionally large impulse. We recall that Walters & Davidson
(1963) have observed large toroidal bubbles produced by releasing vigorous pulses of air
through a tube in the bottom of a water-filled tank.

It remains to consider briefly the theoretical problem of cavities collapsing under the
influence of solid boundaries. Perhaps foremost amongst relevant bits of theory there is
the very well known result that a pulsating body is attracted towards its ‘image’ in a rigid
plane. In the case of a sphere pulsating with small amplitude this effect can be explained
by a neat argument discovered by C. A. Bjerknes nearly a century ago, for which we may
refer to Birkhoff & Zarantonello (1957, ch. 11, §5). It is much more difficult, however, to
account for the corresponding effect that is observed to occur when a bubble undergoes
large contractions in proximity to a rigid plane, although considerable progress towards
understanding this case has been achieved through analyses based on the assumption that
the bubble remains strictly spherical (i.e. its symmetry is imagined to be maintained by
kinematical constraints which do no work during the motion). Extensive calculations on
these lines were set out in a war time report by M. Shiffman and B. Friedman (included in
Hartmann & Hill 1950), and more have been made since then by Green (1957). This work
shows clearly that whenever a cavity begins its collapse from a position of rest fairly close
to a rigid wall, say, when the nearest distance between the two at the start is about equal
to or is less than the cavity radius, large movements of the centroid towards the wall are to
be expected. Nevertheless, the constraints on the form of the cavity seriously limit the
range of application to cavitation bubbles, even if not so much to explosion bubbles which
do not suffer quite such large contractions and consequent distortions from spherical
form.

An analysis allowing for shape perturbations was made by Rattray (1951). Unfortunately
his method of approximation became unreliable at a degree of deformation that is still
fairly small, and though some evidence of jet formation was found this was not very
conclusive. The most interesting property established by Rattray’s calculations is that an
initially spherical cavity collapsing under the influence of a rigid wall at first becomes
elongated in the normal direction; it is only at a later stage that the cavity flattens on the
side farther from the wall and may go on to develop a jet. This behaviour is presumably
accountable to the greater mobility of radial flow in the direction parallel to the wall than
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in the normal direction. In the calculations made by Naudé & Ellis (1961), which were
mentioned in §3, a particular type of jet formation was clearly demonstrated; but for
initial conditions they took a stationary cavity already partially in contact with
the wall, approximating to a certain experimental cavity generated explosively by
an electric spark, and so these calculations are of doubtful relevance to flow-produced
cavities.

Apart from the generalized Bjerknes effect, in which the attraction is induced by the
volume changes, there are several other effects whereby a cavity might be propelled
towards a solid boundary in a flow system. For example, if a cavity is carried by a flow
under a tangential pressure gradient along a boundary, its relative motion parallel to the
boundary will produce an attraction, since relative velocities in the liquid will be higher
and hence pressures lower on the near side. Again, in a low pressure region where cavities
originate, pressure gradients normal to the boundary will generally be such as to propel
individual cavities towards it, since minima of pressure cannot occur inside the liquid
(Lamb 1932, §44). We do not mean to imply, however, that augmentation of the Bjerknes
effect will necessarily increase the damage capability of collapsing cavities. Indeed just the
opposite may be true because, as we pointed out at the end of §3, too large a normal
movement may precipitate jet formation too early in the collapse for it to be most effective,
the cavity being folded up into toroidal form before the highest possible velocities and
pressures are reached. We can now support this statement by analogy with the simpler case
considered earlier in this theoretical discussion; the interpretation of jet formation as an
impulse-conserving mechanism certainly carries over in a general sense to the present
case, though it must be recognized of course that positive pressures exerted against the
boundary finally annul the impulse of an approaching cavity.

An experimental fact perhaps significant in this regard is that cavitation damage
induced by flow is often most severe in the neighbourhood of stagnation points downstream
from the low pressure zone, notably at the tail end of the large ‘fixed’ cavity (overlaid by
a cloud of small transient bubbles) that may form on a body held in a water-tunnel
(cf. Knapp 1955). In such a region the normal pressure gradient will be positive towards the
boundary, so tending to retard approaching small bubbles. It seems reasonable to con-
jecture that optimal conditions for a damaging blow may occur when an occasional bubble
is swept up to the boundary with such a speed and size that the collapse concludes against
the boundary, and that the effect of the pressure gradient offsets the Bjerknes effect to just
the right extent to delay the formation of a jet until the end.

In hard fact, nevertheless, the diversity of factors that may influence the rate at which
a cavitation bubble approaches a solid boundary, coupled with those influencing its rate
of collapse, debars any comprehensive interpretation in the present state of knowledge;
and it must be accepted that the conditions for a maximum damaging effect are still
wholly in the realm of conjecture.

5. EXPERIMENTS

We wish to present a few experimental results illustrating some outstanding features of
unsymmetrical cavity collapse. A more complete account of our observations and of the
experimental method will be presented in a later paper.

29 Vor. 260. A.
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Apparatus and procedure

The central part of the apparatus was a reinforced Perspex box, of 91 in. square internal
horizontal cross section, which in the experiments to be reported was filled with water to
a depth of about 10 in. The box was closed by an air-tight lid, and the air space above the
water surface could be exhausted by a jet pump; its pressure was generally made about
0-04 atm, the precise value being set by an adjustable leak into the vacuum system.

Before an experiment the water was degassed and rendered capable of withstanding
small tensions without cavitating. This was done by putting the water under vacuum and
vibrating the box vertically with an amplitude sufficient to produce vigorous and wide-
spread cavitation. (Note that a vertical periodic acceleration with amplitude greater than
g will create negative ‘hydrostatic’ pressures for part of each cycle.) The vibration was
continued for about an hour, during which time the noise made by the cavitation became
progressively sharper, indicating more violent collapse, and at the end of which the cavita-
tion would cease if the tensions produced in the water were made less than a certain value.
Thus the water appeared to have acquired a small but appreciable tensile strength.

In the experiments large vapour-filled cavities were grown from small hydrogen nuclei
which were formed by electrolysis on a platinum electrode at the bottom of the box. The
electrode was embedded in epoxy resin, with only a minute portion of its surface exposed
to the water. Single nuclei with radii down to about 0-1 mm could be formed by passing
pulses of current with suitable amplitude and duration through the electrode, and they
floated upwards into the required position for generation of the large cavities. The charac-
teristics of the pulse had to be adjusted rather carefully to insure that only a single nucleus
broke clear of the electrode each time, and various refinements of technique in making
electrodes for this purpose are still under study.

A novel method was used for generating the vapour cavities. When the tiny nucleus had
reached the required position, at about the centre of the volume of water, the box was
struck downwards by a heavy bar suspended on a spring above it. As a result of the blow
the sudden downward acceleration of the box, which was considerably greater than g,
produced a large negative hydrostatic pressure in the water, and a cavity consequently
opened up from the nucleus. The time for growth of the cavities to maximum size was
generally comparable with the time of the subsequent collapse, typically about 0-005 s.

An important feature of the apparatus was a means for creating gravity-free conditions
during the collapse of a cavity. The box was mounted on a platform which could slide
freely upon two vertical columns, and prior to an observation being made it was suspended
by an electromagnet. In the process of striking the box so as to generate a cavity, the
downward movement of the bar caused a break in the supply of current to the electro-
magnet, with the result that the box was in free fall subsequent to the blow. A fall of a few
centimetres allowed sufficient time for the observed collapse of the cavity to be free from
the effects of gravity.

The cavities were observed by means of high speed ciné photography, using a rotating-
drum camera and back-lighting with a flash tube. A sequence of flashes, at a chosen rate
and total duration, was initiated by the signal from an accelerometer which was fixed to
the box and so responded to the impact of the bar. (Oscillographic records of the accelera-
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tion of the box and of the pressure in the water were taken, for comparison with the
measured time histories of the cavities, but we shall not discuss these results here.)

Observations on collapse under gravity

Figure 2, plate 48, shows four successive views, at intervals of 2 ms, of a cavity formed
near the centre of the water, far away from the walls of the container. The free-fall device
was not used in this experiment, and the curious behaviour observed was undoubtedly
an effect of gravity.

The first frame shows the cavity at nearly maximum size, with a diameter of 2-4 cm.
The second frame shows it having contracted to about half this size, and as in the first
frame there appears to have been no significant departure from spherical form. During
the interval between the second and third frames, the cavity collapsed down to micro-
scopic size, so that the third and fourth frames show the cavity on its rebound.

The remarkable situation depicted in the third frame may be explained as follows.
During its previous history, particularly the time spent near maximum size, the cavity
picked up a vertical impulse through the action of gravity (i.e. under the hydrostatic
pressure gradient). This was small enough to produce no noticeable effect in the early
stages of the collapse, as viewed in the first two frames; but, for the reasons discussed at
length in §4, the effect of the impulse became crucial under the enormous reduction of
displaced volume in the final stages. A high-speed jet developed during this brief phase, of
such vigour that it still persisted when the cavity had rebounded back to large size. The jet
can be seen distinctly in the third frame of figure 2, passing upwards through the cavity
and entering the liquid above with such force that a conical protrusion of the cavity
surface was created behind it. In the fourth frame the jet can still be seen, but it appears
to have weakened to the extent that the previous excrescence at the top has been able to
close up.

A similar cavity observed in gravity-free conditions showed no vestige of this behaviour,
confirming that gravity was the vital factor. Thus the importance of the effects of impulse-
conservation, as propounded in §4, is well demonstrated.

Observations on collapse in proximity to a solid boundary

For these experiments a sheet of Perspex was fixed with its plane vertical across the
internal span of the box, and cavities were grown from nuclei sited at various small
distances from it. The free-fall device was generally used. Examples from a large number of
observations made this way are presented in figures 3 to 5, plates 48 and 49. The diameter
of the spherical cavity shown in the first frame of figure 3 was 2-2 cm, and the other figures
are reproduced to the same scale.

Figure 3 presents a choice of four representative views of a cavity collapsed fairly close
to the wall, whose distance from the centre of the cavity at maximum size, as shown in the
first frame, was about 1-3 times the radius. (The position of the wall can be made out, on
the right-hand sides of the pictures, from the reflexion of the cavity in it. The bead-like
features appearing in the cavity surface are merely images of bubbles that formed inci-
dentally a long way behind and for which the main cavity acted as a spherical lens.) The
second frame, taken 5 ms after the first, shows the cavity to have become considerably

29-2
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clongated in the normal direction as the collapse began. This exemplifies the effect
discovered theoretically by Rattray (1951) which was discussed near the end of §4. In the
third frame, 9 ms after the first, the cavity is clearly seen to have become involuted on the
side farther from the wall; and in the last frame, 10 ms after the first, the jet has passed
right through the cavity. From these and neighbouring frames on the ciné film, the jet
velocity was estimated to be about 10 m/s. This value was exceptionally low, however,
because the jet formed rather early in the collapse. (Note also that raising the environ-
mental pressure to atmospheric, i.e. by a factor of about 25, would scale up all such
velocities by 5.)

Figure 4 presents some views of a cavity collapsing further away from the wall. The
timing is explained in the legend to the figure. The first frame shows the cavity during its
initial growth, the second the cavity at maximum size, and the third and fourth the
elongated cavity during the early stages of collapse. The remaining sequence of five
frames, taken at 0-2 ms intervals, shows the formation of a jet, concluding with the cavity
in a somewhat indistinct but in fact toroidal form.

Figure 5 is included for the sake of several extremely interesting features, although we
are unable to explain any of them. In this experiment the cavity was grown from a nucleus
sited at about 15 mm from the wall, that is, very much closer than in the previous experi-
ments; and it seems possible that the odd effects may have been due at least partially
to a vibration of the wall.

The three frames in the top row of figure 5 cover an early phase in the growth of the
cavity, before the presence of the wall had any appreciable effect. The second row of
frames, covering a phase about 6 ms later, shows the cavity in roughly hemispherical form;
and the next row shows it at about the same interval later again, by which time it had
developed a curious stratified form. The sequence of six frames in the last two rows covers
the final phase of the collapse at intervals of 0-2ms. A remarkable feature is the bellows-
like appearance of the contracting cavity; and perhaps even more remarkable is the
unmistakable evidence that a filamentary jet, very much thinner than the cavity at the
time, developed in the interval between the first and second frames of this sequence. By
measuring the distance traversed by the jet, we estimate its speed to have been at least
35 m/s, and possibly a good deal higher. Hence, when allowance is made for the fivefold
increase of speed that would result if the environmental pressure were raised to atmospheric,
it may be appreciated that jets like this one could be highly damaging to a solid boundary.

This work was in part supported by a Contract with the Ministry of Defence to whom
grateful acknowledgement is made. A.T.E. also wishes to express his indebtedness to the
U.S. National Science Foundation for a Senior Postdoctoral Fellowship spentin Cambridge,
making this collaboration possible. We finally wish to acknowledge the help of the U.S.
Office of Naval Research under Contract Nonr 220(44) in making available some of
the equipment used in the experiments.
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Benjamin & Ellis Phil. Trans. A, volume 260, plate 48

Ficure 2. Photographs taken during collapse (4, B) and rebound (C, D) of cavity far
from boundaries of liquid. Interval between frames, 2 ms. o

Ficure 3. Collapse of cavity near a solid wall. Timing: 4, B, C, D at 0, 5, 9, 10 ms.
‘ (Facing p. 236)
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A

Ficure 4. Growth and collapse of cavity near a solid wall. Timing: 4, B, C at 0, 5-8, 8-8;
D, E, F at 94, 96, 9-8; G, H, I at 100, 10-2, 10-4 ms.

F1cure 5. Growth of cavity from nucleus very close to a solid wall, and subsequent collapse. Timing:
A, B, Cat0,02,04; D, E,Fat 58, 60, 6:2; G, H, [at 114, 11-6, 11-8; J to O at 16-8 to 17-8 ms.
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APPENDIX

Here the results used in §4 are derived, the situation to which they apply being illus-
trated in figure 6. An axisymmetric simply connected body (or cavity) displaces a volume
#"in a fluid which has constant density p and is at rest at infinity. The body moves in the
axial direction, measured by the coordinate x, while at the same time it deforms and con-
tracts or dilates. Let x,(¢) denote the position of the centroid of ¥”, and write #, for dx,/d¢.

The fluid being supposed inviscid and its motion therefore irrotational, it follows that
the whole motion is determined uniquely at any particular instant, say ¢ = ¢;, by the
normal velocity of the internal boundary (Lamb 1932, §41). The normal velocity may be
taken to comprise two parts, the first corresponding to a translation at axial velocity #,
of the instantaneous form at ¢ = £, and the second to the rate of deformation, to represent
which the normal velocity relative to the centroid is denoted by 7. Accordingly, the velocity
potential may be expressed as the sum of two parts,

¢ = £o @1+ bo (A1)
for which the respective boundary conditions are
Oy _0x 09y _ 4
o "o am " (42)

over the surface § of the body. (Here n refers to the outward normal.)

Ficure 6. Definition sketch showing axisymmetric body in an infinite fluid.

At large radii r from the centroid, ¢ diminishes at least as rapidly as r~!. Hence the
kinetic energy of the fluid is given by the surface integral

T ~—4of[ 95has,

which, after (A 1) has been substituted, can be put in the form

T — \Mig+Jéy+ T, (A 3)
with M:-p” ¢1%d5, | (A 4)
7 ==4o[[ (082 + 8, 50) as, (45)

—%ﬂffs%%%d& (A 6)
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We note that, by the definition of ¢,, the coeflicient A is the ‘induced mass’ for trans-
lations of a rigid body formed by freezing the present body in its form at ¢ = ¢,. Further-
more, the energy 77, being independent of %, is a property only of the rate of deformation.
Unfortunately for the simplicity of the argument, the coeflicient J does not in general
vanish. But there are several things to be said about it which were of use in §4.

From Green’s second identity applied to the potentials ¢; and ¢,, it follows that the
two parts of J expressed in (A 5) are equal, so that

——p[[ . fras

=[] by 0¥ as. (A7)

Thus J is completely determined by the deformation relative to the centroid, being
independent of the translational motion. Now apply Green’s second identity to ¢, and

x—x,. It shows that
| Tas=|[ 992 (4, dS,
S+S ses 0N

where §’ is any surface enclosing §. Letting this be a sphere centred on x = x,, we see
that both integrals over $” depend only on the coefficient, say 4;, of the dipole term

(x—xy)[r® = r~2cos 0

in the general asymptotic expansion of ¢, for large . Hence, putting d¢,/dn = n on §, we

ebrain J = -,0{ f f e dS+47rAl} (A 8)

(cf. Lamb, §1214). But we have J f i(x—x,) dS = 0 (A9)
S

as a condition that the centroid remains at ¥ = x, as the body deforms. Thus (A 8) shows
J to be proportional to the strength 4, of the dipole ‘far-field” that would be generated by
the normal motion 7 of the body in a fluid otherwise at rest.

At first sight one might easily be led into supposing that no dipole far-field could be
generated by movements of a body keeping the centroid of the displaced volume fixed, but
this conclusion is certainly not true in general. Nevertheless it does appear to be true,
roughly speaking, that the body has to develop a large degree of skewness in both form
and velocity distribution to make the dipole field—and hence J—a significant factor in
the motion as a whole. Another interpretation of J which supports this conclusion in-
tuitively is that, if the motion 7 of the boundary were generated impulsively, J would give
the total reaction of the fluid against constraints which kept the centroid from moving in
the axial direction. Alternatively, if the body were free to move, J would be interpretable
as the Kelvin impulse in an inertial frame of reference moving with the centroid (this
interpretation is perhaps obvious from equation (5) in the main text). Thus J is a measure
of the tendency of the deformations to self-propel the body in the axial direction, and
clearly the body must squirm into a highly skew configuration in order to develop a strong
effect of this sort.
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If S is a sphere, then J vanishes for all possible velocity distributions 7. This is easily
proved by expressing ¢, in a series of solid harmonics and 7 in a corresponding series of
surface harmonics (Legendre functions) over the sphere, whereupon (A 9) shows there
to be no dipole term in the expansion and the result J = 0 follows from (A 8). The same
result is found to hold when S is an ellipsoid. Some calculations to examine the magnitude
of J in the case of a perturbed sphere have been made by the present authors, expressing
the radius of S as an expansion of Legendre functions, but the results are too complicated
to justify inclusion here. It will suffice to note that J depends to a first approximation on
factors such as d,a;, where a, and a4 are the coefficients of the second- and third-order
Legendre functions.

[The simple case when § remains spherical during the whole motion is worth noting,
the result for 7" having been used by many people in explosion-bubble studies (e.g. by
Sir Geoffrey Taylor in a paper included in Hartmann & Hill (1950)). This case gives

M= 190753 = 2mpR%3, J=0 and 7’ = 2mpR°R?,
207 X 3P p

where R is the radius of the sphere.]

Suppose that the volume and form of the body are determined by a set of parameters
A, () (n=0,1,2,...), which could be, for example, the coeflicients of an expansion in
Legendre functions. From what has been said it may now be appreciated that 7" takes

the general form T =334, 0.}, (A 10)

in which the 4,, , are functions of the A, alone; and J has the form expressed in equation
(3) of the main text. Also M is a function of the A, alone.
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IGURE 2. Photographs taken during collapse (4, B) and rebound (C, D) of cavity far
from boundaries of liquid. Interval between frames, 2 ms.
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+IGURE 3. Collapse of cavity near a solid wall. Timing: 4, B, C, D at 0, 5, 9, 10 ms.
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1GURE 4. Growth and collapse of cavity near a solid wall. Timing: 4, B, C at 0, 5-8, 8:8;

D, E, F at 9-4, 9-6, 9-8; G, H, [ at 10-0, 10-2, 10-4 ms.
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TGURE 5. Growth of cavity from nucleus very close to a solid wall, and subsequent collapse. Timing:
A, B, Cat0,0-2,04; D, E, Fat 58,60, 62;G, H, [at11-4,11-6, 11-8; J to O at 16-8 to 17-8 ms.
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